
Learning Broadcast Protocols with LeoParDS

Noa Izsak1⋆ , Dana Fisman1 , and Swen Jacobs2

1 Ben Gurion University, Beer-Sheva, Israel
2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

izsak@post.bgu.ac.il, dana@bgu.ac.il, jacobs@cispa.de

Abstract. LeoParDS is a new tool for learning broadcast protocols
(BPs) from a set of positive and negative example traces. It is the first
tool that enables learning of a distributed computational model in a pa-
rameterized setting, i.e., with a parametric number of processes running
the BP concurrently. We describe the tool along a running example, dis-
cuss some implementation details, and present experimental results on
randomly generated BPs.

Keywords: learning computational models · broadcast protocols · pa-
rameterized verification · concurrent systems.

1 Introduction

We present LeoParDS3, an automatic tool for passive learning of broadcast
protocols from example traces. Broadcast protocols are one of the most pow-
erful computational models for which some parameterized verification problems
are still decidable, and are strictly more expressive than protocols using commu-
nication primitives such as pairwise rendezvous [32] or disjunctive guards [22].

s0 s1

b!!
a??, b??

a!!, a??

b??

Fig. 1: BP Btoy with 2 states

A Broadcast Protocol, in short BP, is a tuple
(S, s0, L,R) consisting of a finite set of states S with
an initial state s0 ∈ S, a set of labels L and a transition
relation R ⊆ S×L×S, where L = {a!!, a?? | a ∈ A} for
some set of actions A (see Fig. 1). A transition labeled
with a!! is a broadcast sending transition (for action
a), and a transition labeled with a?? is a broadcast
receiving transition (for action a), also called a response. For each action a ∈ A,
there is a unique state for the outgoing sending transition, and there must be
exactly one outgoing response from every state. That is, when a process p is in a
certain state s, and action a was broadcast by some other process q, the process
p must respond by taking the unique a?? transition from s.

Given a BP B = (S, s0, L,R) we use Bn to denote the system composed of
n indistinguishable (i.e., identical) processes that execute B in parallel. Let [n]
denote the set {0, 1, . . . , n}. A configuration of Bn is a function q : S → [n],
⋆ This author was supported by ISF grant 2507/21 & A special thanks to Paul Eichler,

for his guidance with Docker, which was instrumental in completing the tool
3 LeoParDS can be accessed by GitHub or Zenodo (DOI 10.5281/zenodo.10968037)

https://doi.org/10.5281/zenodo.11080250
https://doi.org/10.5281/zenodo.11080250
https://orcid.org/0009-0004-1333-2490
https://orcid.org/0000-0002-6015-4170
https://orcid.org/0000-0002-9051-4050
https://github.com/Noa-Izsak/Learning-Broadcast-Protocols-with-LeoParDS
https://zenodo.org/doi/10.5281/zenodo.10968037

2 N. Izsak et al.

assigning to each state s ∈ S the number of processes that are currently in local
state s. The initial configuration q0 is the configuration with q0(s0) = n and
q0(s) = 0 for all s ̸= s0. In a global transition, all processes make a move: One
process takes a sending transition (labeled a!!), modeling that it broadcasts the
value a to all the other processes in the system. Simultaneously, all of the other
processes take the receiving transition (labeled a??) from their current state.
Note that in B1, namely when the system is composed of a single process, this
process takes only sending transitions, and there are no responses since there
are no other processes. For those less familiar with broadcast protocols, more
definitions, examples, and intuitions are given in [28].

One of the important definitions is the language of a broadcast protocol.
With a particular n∈N we use L(Bn) to denote the set of words that are feasible
in Bn. For instance, consider the BP Btoy of Fig. 1. Then bbb is feasible in B1

toy,
and ba is feasible in B2

toy but not in B1
toy (since the single process remains in s0

after taking b and a cannot be broadcast from s0). A BP B defines an infinite
family of systems {Bn}n∈N, often referred to as a parameterized system. We use
L(B) for the set of words feasible by at least one member Bn of this family,
namely L(B) = ⋃

n∈N L(Bn).
LeoParDS deal with fine BPs [28]. A BP is fine if it does not have hidden

states4 and there exists a cutoff k, such that the language of Bk is equal to the
language of Bn for any n > k.

The learning problem we are interested in is inferring a broadcast protocol B′

from a sample consisting of (execution) traces of members of a family {Bn}n∈N
for some unknown BP B such that L(B′) is consistent with the sample. In addi-
tion, if the sample subsumes a characteristic sample for B then we require that
L(B′) = L(B). A characteristic sample, in short CS, is an important notion from
the literature on passive learning of automata [37]. Loosely speaking, a CS is a
set of labeled words from the unknown target language U from which a learner
can infer an automaton B whose language is equivalent to U .

LeoParDS can also be used to generate a CS for fine BPs, as well as auto-
matically detecting the cutoff of a fine BP. Additional functionalities of LeoP-
arDS are listed in the overview paragraph. What makes LeoParDS unique is
that it supports learning for a parametric number of processes, namely without
assuming a fixed known number of processes that run in parallel.5

LeoParDS relies on the theoretical ideas developed in [28]. There, a learning
algorithm is devised that can infer a correct BP from a sample that is consistent
with a fine BP, and it is proven that it will derive a minimal equivalent BP if
the sample is sufficiently complete (i.e., subsumes a CS). Various other learning
problems concerning fine BPs are answered in [28], unfortunately on the negative
side. In particular, it is shown (i) that the consistency problem for fine BPs is
NP-hard, (ii) that characteristic samples may be of size exponential w.r.t. the

4 A hidden state is a state where there are no outgoing broadcast sending transition.
5 As far as we know, it is the first tool that enables learning of a distributed computa-

tional model in a parameterized setting. Hence the name LeoParDS, which stands
for Learning of Parameterized Distributed Systems.

Learning Broadcast Protocols with LeoParDS 3

number of the states of the BP, and (iii) that under standard cryptographic
assumptions, fine BPs are not polynomially predictable.

These negative results, and the fact that the inference algorithm also relies
on a constraint solver (an SMT solver to be precise), make one wonder whether
inferring a BP can be made practical, and may deter one from trying to invest
in an implementation. Since availability of such a tool can benefit the scientific
community, we took on ourselves the mission of implementing the first such tool.
This paper is here to show that the single positive result from [28] actually holds
in it many opportunities and deserves to be further studied by both theoreticians
and practitioners. We note that many research fields such as studies of multi-
agent systems [21,26,57], verifying concurrent systems and protocols [23,18] and
distributed decision-making processes and strategies among multiple agents or
players [15,43] in game-theory can use the techniques implemented in this tool
to uncover novel insights and approaches in distributed computing.

To start bridging the gap between the theoretical results and their application
in practice, we have implemented the techniques presented in [28]. Furthermore,
for cases where the theory does not give us a complete solution, we implemented
approximate methods that enhance the applicability of these techniques (at the
cost of strong correctness guarantees). The result is a tool that allows us to
demonstrate that even the techniques with a high theoretical complexity scale
surprisingly well in practice (on randomly generated BPs), and that can solve a
number of tasks that could benefit anyone interested in learning-based techniques
for BPs, and potentially other parameterized distributed systems.

Related work. Learning of computational models is broadly classified into ac-
tive and passive learning algorithms. The algorithms for active and passive learn-
ing of DFAs [2,41,52,42,17,39,56] have been extended to various other compu-
tational models including non-deterministic and alternating automata [20,12,5],
symbolic and lattice automata [7,27,30], ω-automata [45,25,6,3,4,11,46], register
automata [38,16], multiplicity, weighted and probabilistic automata and gram-
mars [9,54,8,29], and more. The concurrent models for which a learning algo-
rithm has been developed include communicating automata [13], workflow Petri
nets [24], and negotiation protocols [48]. The main difference between our work
and these works is that we assume that an arbitrary number of processes can
interact while these works assume a fixed number of processes.

Our learning algorithm belongs to the class of constraint-based learning al-
gorithms. The first constraint-based algorithm for DFAs is due to Biermann and
Feldman [10]. This algorithm was refined and improved [50,34,36]. Constraint-
based algorithms are also used for learning temporal logic-formulas [49,53].

In terms of tools, the open source libraries LibAlf [14] and LearnLib [40] im-
plement many of the algorithms for learning DFAs, Mealy and Moore machines,
as well as for more powerful computational models such as visibly-pushdown au-
tomata. For ω-regular languages there are the tools ROLL [44] and ALMA [31].
We are not aware of tools for learning the concurrent models mentioned above.

4 N. Izsak et al.

Overview. The central task of LeoParDS is to infer a BP from a given sample.
This is task BPInf (BPInfMin) listed under 3 below. In addition to that, it can
solve four related tasks. The five main tasks that the tool can solve are:

1. CSGen: Given a fine BP B, return a characteristic sample SB for it.
2. RSGen: Given a BP B, subject to certain parameters, return a random

sample S of words with labels corresponding to B.
3. BPInf (and BPInfMin): Given a sample S, return a (minimal) BP that is

consistent with S.
4. BPGen: Given bounds on the numbers of states and actions, return a random

BP B within these bounds.
5. AEQ: Given two BPs B1 and B2, return whether they are equivalent (i.e.

accept the same language) up to some approximation.

Even though each of these 5 tasks can stand by itself, the experiments that
we describe later on use all of them. First we generate a BP (BPGen). Given a BP
one can do one of two things, (1) learn an equivalent (and potentially minimal)
fine BP. This can be done by generating a CS (CSGen), and inferring a BP from
it (BPInf). Or (2) learn a consistent BP that is not necessarily equivalent to
the original BP. This can be done by generating a random consistent sample
(RSGen) (which is not necessarily a CS) and inferring a BP that is consistent
with the sample. For option (1), in order to evaluate the tool (i.e., to show that
we indeed learned an equivalent BP) we run AEQ and check that the language
of the original and the generated BP are indeed equivalent. We discuss these
tasks in detail in §2-§6. In §7 we discuss empirical results gathered on runs of
LeoParDS on a large collection of randomly generated BPs.

2 Characteristic Sample Generation

b

b

a

b a

b a

a

ab

ab

ab

feasible for 1 process
feasible for 2 processes
infeasible for 1 process
infeasible for 3 processes

Fig. 2: Tree representing the
CS of Btoy

Roughly speaking, a characteristic sample (CS) SB is a
set of labeled words from which a learner can correctly
infer the target model B, i.e., given SB or any sample
subsuming it, a learner can generate a BP B′ such that
L(B) = L(B′). The generation of a CS for BPs [28,
Sec.5] is more involved than that for DFAs [33]. This
section explains how the module CSGen generates a
CS for a given fine BP.

In the context of BPs, a sample is a set of triples
(w, n, b), where w∈A∗, i.e., a word over the actions A
of the given BP B, n ∈ N is a number of processes, and
b is a truth value stating whether this word is feasible
with n processes that execute B in parallel. When b
is t (resp. f) this example is termed a positive (resp.
negative) example. For the BP Btoy from Fig. 1, the
triple (bb, 1,t) states that the sequence of actions bb
is feasible in B1

toy (as a single process can take the

Learning Broadcast Protocols with LeoParDS 5

sending transition labeled with b!! from the initial state an arbitrary number of
times). The triple (ba, 1, f) states that the sequence of actions ba is infeasible
in B1

toy (as a single process can only execute b∗, but is not able to move from
s0 to s1). The triple (ba, 2,t) states that ba is feasible in B2

toy (if one process
executes b!!, the second will move along the receiving transition labeled b?? from
its current state s0 to s1, which will enable the sending transition on a!!, thus
making ba feasible).

A tree representing the characteristic sample SB for Btoy is sketched in Fig. 2.
Note that for any BP, feasibility of word w for n processes, i.e., (w, n,t), implies
that (w,m,t) for any m≥n. Similarly, infeasibility of a word w for n processes,
i.e., (w, n, f), implies that w is also infeasible for any m ≤ n. We use these
implications to avoid clutter in the figure by only representing feasible (resp.,
infeasible) examples for the minimal (resp., maximal) number of processes with
which they appear in the sample. In Fig. 2, nodes in violet signify that (w, 1,t)∈
SB, stating that w, the sequence of actions from the root to the given node, is
feasible in B1

toy. Nodes in teal represent a triple (w, 2,t)∈SB, corresponding to
words that are feasible in B2

toy, but not making any assumption about feasibility
of w in B1

toy (e.g., bbbb is feasible both in B2
toy and in B1

toy, but SB only contains
(bbbb, 2,t)). If a node has a violet border, we also have (w, 1, f)∈SB, stating that
w is infeasible in B1

toy. Similarly, nodes with a blue border such as (w, 3, f)∈SB,
signify that w is infeasible in B3

toy.
In order to ensure termination also in case the given BP has no cutoff, CSGen

assumes a given bound, Mp, on the number of processes. If the input BP B has
cutoff c≤Mp, procedure CSGen generates a CS SB for B. Otherwise, i.e., if either
c>Mp or B does not have a cutoff, it will generate the trimming of the CS that
consists only of triples where the number of processes is bounded by Mp.

3 Random Sample Generation

In many scenarios the data set given to the learning algorithm may not neces-
sarily subsumes a characteristic set. LeoParDS can also be given a user-defined
sample. In addition, RSGen can be used to generate a random sample. The mod-
ule RSGen receives a parameter Fw that describes the number of words required
to be in the sample, a parameter Mℓ that bounds the length of words in the
sample, a parameter Mp that bounds the number of processes, and an optional
parameter Fr to determine the ratio of positive words in the sample (out of the
total number of words in the sample). If the optional parameter is not given,
RSGen repeatedly calls procedure RWGen, which draws uniformly at random a
number ℓ in 1 to Mℓ and then constructs a word w of length ℓ by randomly draw-
ing an action for each position of the word. It then draws uniformly at random a
number p in 1 to Mp and checks whether w is feasible in B with p processes, and
adds the triple with the respective answer (w, p,t) or (w, p, f) to the sample.

Since the probability that a randomly drawn word is in the language of
a given BP is very small and decreases with increasing length of words, the
optional parameter Fr can be used to obtain a sample with the desired ratio of

6 N. Izsak et al.

positive examples. If this parameter is given, an alternative procedure RPWGen
is used to generate positive words, which randomly draws a number of processes
p in 1 to Mp, and a length ℓ in 1 to Mℓ, and then simulates a random run of
those p processes for ℓ steps as follows. It holds a state vector, a configuration,
that records the position of all processes. At first, they are all at the initial
state. At step i ∈ [1..ℓ] it checks what are the enabled actions A′ according to
current positions of the processes. It then randomly chooses an action a from A′

and simulates the transition on this action (one process, the sender, takes the
sending transition, and the rest of the processes follow the receiving transition).
The negative words, i.e. a (1−Fr) of the words, will be randomly generated and
checked to be negative examples, if so then they will be added to the sample.

As a small example, if we call RSGen with the BP Btoy from Fig. 1 and
parameters Fw = 5, Mℓ = 5, Mp = 3, Fr = 0.2, the output could be the sample
S = {(aabab, 2, f), (abbb, 2, f), (baa, 3,t), (bba, 2, f), (ba, 1, f)}.

4 Inference of a BP from a Sample

The modules BPInf and BPInfMin are the central part of the tool LeoParDS.
The module BPInf infers a BP from a given sample as described in [28]. As usual
in passive learning algorithms, it guarantees to return a minimal representation
only if the sample subsumes a CS. The module BPInfMin is a modification
of BPInf that is guaranteed to always return the minimal BP consistent with
the sample, i.e., even if the sample does not subsumes a CS. The high-level
architecture of BPInf and BPInfMin are given in Fig. 3.

GenConstr Z3 CreateBP
C1, . . . , C5 sat BS

unsatQ← Q ∪ {q′}

QS

(a) High-level architecture of BPInf

GenConstr Z3 InsistMinimal Z3 CreateBP
C1, . . . , C5 sat

C′ B′

unsatQ← Q ∪ {q′}

Q

unsatn← n+ 1

n
satS

(b) High-level architecture of BPInfMin

Fig. 3: The high-level architectures of BPInf and BPInfMin.

The procedure GenConstr generates from a given sample S five sets of con-
straints C1, . . . , C5, as described in [28, Sec.4]. These constraints are passed to

Learning Broadcast Protocols with LeoParDS 7

the SMT solver Z3 [47].6 If the result is sat, i.e., the constraints are satisfiable,
then a satisfying assignment is passed to CreateBP that constructs from it a BP
B′ that is consistent with S as per [28, Thm 4.1]. Moreover, if the sample S
subsumes a CS of some BP B then B′ will be correct, namely equivalent to B
and minimal among all BPs that are equivalent to B [28, Thm 5.3].

The constraints C1, . . . , C5 are defined with respect to a set of states Q, a
set of actions A, and partial functions f st :A→Q, f !! :A →Q, and f ??

a :Q→Q
for every a ∈ A. Functions f st and f !! associate with each action the origin and
target state, respectively, and each function f ??

a , for each action a∈A, associates
with each state q the target state for the receiving a?? transition from q. Initially,
A consists of all actions in the sample and Q consists of one state per action,
namely Q = {f st(a) | a ∈ A}. If from some states more than one action is
enabled, then fewer states will be required. For example, if f st(a) = f st(b), then
the set of states will have a single value representing both f st(a) and f st(b).

If the sample subsumes a CS then the constraints C1, . . . , C5 are satisfiable
and the BP B′ constructed by CreateBP is correct and minimal. If the sample
does not subsume a CS then there are two options. The first option is that the
constraints C1, . . . , C5 are immediately satisfiable, although the sample does not
subsumes a CS. The second is that the constraints are not satisfiable. In this
case, we incrementally add states to Q. (See the loop in Fig. 3a at the middle.)
Each new state is associated with an action that does not appear in the sample.
We add the states incrementally and try to satisfy the constraints C1, . . . , C5

relative to the larger set of states Q until they become satisfiable, at which point
CreateBP will return a consistent BP that agrees with the sample.

s0 s1B1 :

b??, q??
b!!, a!!, a??

a??, b??

q!!, q??

s0 s1

s2

B2 :

a??, q??
b!!

b??

q!!, q??

b??, a??

b??, q??, a??

a!!

Fig. 4

In both cases it could be that the satisfying
assignment used more states in Q than necessary.
Hence, if we want to insist that a minimal BP is re-
turned, BPInfMin proceeds as follows. A new param-
eter n that bounds the number of states to n is in-
troduced. (See the loop on the gray part of Fig. 3b.)
BPInfMin tries to satisfy the constraints with the
additional requirement that each state corresponds
to a number in [1..n]. Since we gradually increment
n it is guaranteed that we return a minimal BP that
is consistent with the sample in this case too.7

Note that even in the second case, i.e., when
the constraints are not satisfiable immediately and
states were added incrementally until the con-
straints became satisfiable, unless we use BPInfMin,
the returned BP might not be minimal. To see how this can happen consider the

6 Note that all variables in our SMT constraints are over finite domains with known
size, implying that our constraints are decidable, and Z3 provides a decision proce-
dure for such constraints.

7 Alternatively we can search for the exact n using a binary search, but we have not
yet implemented this option.

8 N. Izsak et al.

sample S = {(aa, 1, f), (ba, 1, f), (bb, 1, f), (bab, 2,t), (baabb, 2,t)}, which agrees
with the BP B1 of Fig. 4.

In order to have a satisfying assignment for this sample, we must have more
states than f st(a) and f st(b) (which are the initial value of the set of Q). Note
that from the sample, we know that f st(b) is the initial state (since bab is fea-
sible). However, f !!(b) ̸= f st(a) (since (ba, 1, f) ∈ S) and f !!(b) ̸= f st(b) (since
(bb, 1, f) ∈ S). Therefore, a new state is required so that f !!(b) will be equal to it.
Let f st(q) be the state added in the loop in order to find a satisfying assignment.
Now, with Q = {f st(a), f st(b), f st(q)} the constraints are satisfiable. However, as
we can see in Fig. 4, both of the BPs B1,B2 agree with the sample S. Yet, the
SMT solver may return the one with three states rather than the one with two.
The language of the two BPs is different (note that a ∈ L(B1

1) but a is infeasible
in L(B1

2)) yet both are consistent with the given sample.

5 Generation of Random BPs

LeoParDS can be used to generate a sample for a user-defined BP with no
hidden states. To generate a random BP, the module BPGen randomly generates
BPs with no hidden states. The module receives parameters Ms,Ms that bound
the number of states and Ma,Ma that bound the number of actions. It first
chooses at random a number ns > 1 between Ms and Ms; this will be the
number of states. Each state s is initially associated with a unique action a that
is the sending action from s. This assures us that the generated BP will have
no hidden states. Then a random number na between Ma and Ma of additional
actions is chosen; these actions are distributed randomly between the states.
After this step there could be more than one sending transition from each state,
as is the case in state s0 in B1 in Fig. 4.

Finally, for every action a, its broadcast sending and receiving transitions are
determined: the sending transition is an edge from the state s associated with
a to a randomly chosen target state s′, and is labelled by a!!. Furthermore, for
every state s and every action a ∈ A, a receiving transition is determined by
picking a random target state s′, and this transition is labelled with a??.

As an example, if BPGen is called with Ms = 2,Ms = 3,Ma = 0,Ma = 2, the
output could be the BP B1 or B2 shown in Fig. 4.

6 Checking approximate equivalence of two BPs

Since checking equivalence of BPs is probably infeasible8, we implemented an
approximate equivalence check. The module AEQ receives two BPs B1 and B2,
a bound Mc for the cutoff, a bound Mℓ on the length of words, a bound Mw on
the number of words, and a bound Mt on the running time.

8 Checking reachability of local states has Ackermannian complexity [55]. To the best
of our knowledge no better complexity algorithm for checking equivalence is known.

Learning Broadcast Protocols with LeoParDS 9

The first approach tries to generate a CS for both B1 and B2 incrementally,
first for 1 process, then for 2 processes, etc., until reaching the bound Mc. For
each triple (w, n, b) where w ∈ A∗, n ∈ N, b ∈ {t, f} that is added to the CS
of B1 it checks whether w is feasible (resp. infeasible) with n processes in B2 iff
b = t (resp. b = f), and similarly for each triple added to the CS of B2. If it is
feasible in one but not in the other it returns “no”, otherwise it continues until
reaching Mc at which point it returns “yes”.

The second approach instead of exhaustively generating the CS of both BPs
conducts a random walk on the BPs (and again checks for disagreement between
the two BPs on some word and some number of processes). For a given number of
processes nc in [1,Mc], starting with nc = 1, it maintains a pair of configurations
(state-vectors) (v1,v2), one for each of the BPs. Initially vi is the state-vector
where all nc processes are in the initial state of Bi. It then defines Ai (for
i ∈ {1, 2}) to be the set of actions enabled from vi in Bi. If A1 ̸= A2 it returns
“no”. Otherwise, it randomly chooses an action a ∈ Ai and updates the current
pair of configurations to be those obtained by the broadcast of action a. It
continues this way until either A1 ̸= A2 or the limit on the length of words is
reached. If the limit on the length of a word is reached, it restarts the walk.
If the limit on the number of words is reached, we increase nc and repeat the
process. If nc = Mc or the time bound is reached it returns “yes”.

7 Experiments

Our experimental results may lack the fireworks associated with groundbreaking
discoveries, but they carry immense value:
(1) Practical Applicability: LeoParDS consistently solved the generated in-
stances. It navigated the intricacies of the inference problem, demonstrating its
practical utility. The gap between theory and reality narrowed significantly.
(2) Scalability: As the problem complexity increased, LeoParDS maintained
predictable performance. This scalability bodes well for future applications.
(3) Broader Implications: Our contribution extends beyond the inference
problem for BPs. Researchers in diverse fields: verification, multi-agent learn-
ing, concurrent systems, strategies among multiple agents or players and others
can leverage LeoParDS. By releasing it to the scientific community, we lay the
foundation for future advancements.

We ran all experiments on a cluster with Intel Xeon E5-2620 v4 CPUs. We
allocated one CPU core and 30GB of RAM with time limit of 1 hour. For our
experiments we randomly generated 4149 BPs with a number of states in [2, 20],
number of actions in [0, 8]. For each of these BPs we generated a random sample
with a random number of words, Fw, in [5, 100]; with a bound of Mℓ=20 on the
length of the words, and a bound of Mp=20 for the number of processes. The
ratio of positive examples in the sample ranges between 0 and 1.

Table 1a provides details on the number of states of the generated BPs. Note
that the number of states of a minimal equivalent BP might be smaller. Table 1b
provides details on the number of words in the generated samples. In the first

10 N. Izsak et al.

(a) (b)

Fig. 5: SMT duration according to several parameters

850 generated random samples we used RWGen to randomly generate words.
As discussed in §3, words generated by RWGen are more likely to be negative,
and the probability increases with the length of words. Therefore, the ratio of
positive words is generally low. To address this phenomenon, we implemented
RPWGen which generates positive words. Table 1c provides details on the ratio
of positive words in all the samples. We run BPInf on each of the generated
samples. Table 1d provides details on the time (in minutes) it took the SMT-
solver to find a satisfying assignment. The time to generate the BP from the
assignment is negligible. We can see that 70.23% of the examples terminated in
less than 5 minutes, and 7.25% timed out. Tables 1a-1c provide information only
on the samples that did not time out.

Fig. 5 shows the time needed for SMT solving (in seconds) relative to various
parameters. In both figures 5a and 5b the z-axis is the SMT solving time, and
the colors correspond to the number of words in the sample. In Fig. 5a the x-axis
(resp. y-axis) shows the number of states in the randomly generated BP (resp. in
the BP learned by BPInf). We can see that the number of states in the inferred
BP is very close to the number of states in the generated BP. Recall that it could
be smaller, since the randomly generated BP might not be minimal.

In Fig. 5b the x-axis shows the number of states in the randomly generated
BP, and the y-axis shows the number of words in the sample. We can see that

Table 1: Statistical information

(a)

#states %BPs
[2, 5) 36.64%
[5, 10) 37.27%
[10, 15) 16.87%
[15, 20] 9.23%

(b)

#words %BPs
[0, 25) 21.67%
[25, 50) 44.28%
[50, 75) 24.74%
[75, 100] 9.30%

(c)

pos-ratio %BPs
[0.0, 0.10) 40.46%
[0.10, 0.25) 39.22%
[0.25, 0.50) 16.50%
[0.50, 1.0] 3.82%

(d)

SMT(min) #BPs
[0, 5) 2914
[5, 30) 773
[30, 60] 161

timeout 301

Learning Broadcast Protocols with LeoParDS 11

(a) (b)

Fig. 6: More plots for SMT duration according to several parameters

while the SMT time is affected mostly by the number of words in the sample, for
BPs with a large number of states and actions the SMT time is larger even with
fewer words, see Fig. 6a. When comparing the effect of positive vs negative words
in the sample, we can see that the SMT time is mostly affected by the number
of negative words. Note also that negative words are relatively longer, and may
include more actions, both factors may affect the SMT time, see Fig. 6b.

8 Conclusions and Future Work

We have presented LeoParDS, the first automatic tool for passive learning
of parameterized distributed systems, in particular in the form of broadcast
protocols (BPs). In addition to its main task, the inference of a BP from a
sample, LeoParDS supports the generation of random BPs, the generation of a
characteristic or a random sample from a BP, as well as approximate equivalence
checks between two BPs. All of these tasks come with a number of parameters
that give the user control over the precision and the required resources. Based
on the tasks that are already implemented, LeoParDS can be used for instance
in the field of robotics and autonomous systems to learn control policies from
observed sensor data, as well as a toolbox for future developments in the learning
of parameterized distributed systems.

In future work, we plan to investigate both practice-oriented extensions of
LeoParDS, such as the integration of other SMT solvers or heuristical sup-
port for non-fine BPs, and fundamental extensions to support other computa-
tional models, such as reconfigurable broadcast networks [19], rendezvous sys-
tems [32,1], or Petri nets/VASS [51,35]. In conclusion, LeoParDS is not just a
solution; it’s an invitation to explore uncharted territories.

12 N. Izsak et al.

References

1. Aminof, B., Kotek, T., Rubin, S., Spegni, F., Veith, H.: Parameterized model
checking of rendezvous systems. In: CONCUR. Lecture Notes in Computer Science,
vol. 8704, pp. 109–124. Springer (2014)

2. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput.
75(2), 87–106 (1987)

3. Angluin, D., Antonopoulos, T., Fisman, D.: Query learning of derived ωω\omega-
tree languages in polynomial time. Log. Methods Comput. Sci. 15(3) (2019)

4. Angluin, D., Antonopoulos, T., Fisman, D.: Strongly unambiguous büchi automata
are polynomially predictable with membership queries. In: 28th EACSL Annual
Conference on Computer Science Logic, CSL 2020. pp. 8:1–8:17 (2020)

5. Angluin, D., Eisenstat, S., Fisman, D.: Learning regular languages via alternating
automata. In: Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015. pp. 3308–3314 (2015)

6. Angluin, D., Fisman, D.: Learning regular omega languages. Theor. Comput. Sci.
650, 57–72 (2016)

7. Argyros, G., D’Antoni, L.: The learnability of symbolic automata. In: Computer
Aided Verification - 30th International Conference, CAV 2018, Proceedings, Part
I. pp. 427–445 (2018)

8. Balle, B., Mohri, M.: Learning weighted automata. In: Algebraic Informatics - 6th
International Conference, CAI 2015. Proceedings. pp. 1–21 (2015)

9. Beimel, A., Bergadano, F., Bshouty, N.H., Kushilevitz, E., Varricchio, S.: Learning
functions represented as multiplicity automata. J. ACM 47(3), 506–530 (2000)

10. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from
samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (Jun 1972)

11. Bohn, L., Löding, C.: Constructing deterministic ω-automata from examples by
an extension of the RPNI algorithm. In: 46th International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2021. pp. 20:1–20:18 (2021)

12. Bollig, B., Habermehl, P., Kern, C., Leucker, M.: Angluin-style learning of NFA.
In: IJCAI 2009, Proceedings of the 21st International Joint Conference on Artificial
Intelligence, 2009. pp. 1004–1009 (2009)

13. Bollig, B., Katoen, J., Kern, C., Leucker, M.: Learning communicating automata
from mscs. IEEE Trans. Software Eng. 36(3), 390–408 (2010)

14. Bollig, B., Katoen, J., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: The
automata learning framework. In: Computer Aided Verification, 22nd International
Conference, CAV 2010. Proceedings. pp. 360–364 (2010)

15. Boutilier, C.: Planning, learning and coordination in multiagent decision processes.
In: TARK. vol. 96, pp. 195–210. Citeseer (1996)

16. Cassel, S., Howar, F., Jonsson, B., Steffen, B.: Active learning for extended finite
state machines. Formal Asp. Comput. 28(2), 233–263 (2016)

17. Castellanos, A., Vidal, E., Varó, M.A., Oncina, J.: Language understanding and
subsequential transducer learning. Computer Speech & Language 12(3), 193–228
(1998)

18. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Trans. Program.
Lang. Syst. 8(2), 244–263 (apr 1986). https://doi.org/10.1145/5397.5399, https:
//doi.org/10.1145/5397.5399

19. Delzanno, G., Sangnier, A., Traverso, R., Zavattaro, G.: On the complexity of
parameterized reachability in reconfigurable broadcast networks. In: FSTTCS.

https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399
https://doi.org/10.1145/5397.5399

Learning Broadcast Protocols with LeoParDS 13

LIPIcs, vol. 18, pp. 289–300. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2012)

20. Denis, F., Lemay, A., Terlutte, A.: Residual finite state automata. In: STACS 2001,
18th Annual Symposium on Theoretical Aspects of Computer Science,Proceedings.
pp. 144–157 (2001)

21. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: A survey. IEEE Access
6, 28573–28593 (2018). https://doi.org/10.1109/ACCESS.2018.2831228

22. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few.
In: CADE. Lecture Notes in Computer Science, vol. 1831, pp. 236–254. Springer
(2000)

23. Emerson, E.A., Namjoshi, K.S.: Automatic verification of parameterized syn-
chronous systems (extended abstract). In: Alur, R., Henzinger, T.A. (eds.) Com-
puter Aided Verification, 8th International Conference, CAV ’96, Proceedings.
Lecture Notes in Computer Science, vol. 1102, pp. 87–98. Springer (1996). https:
//doi.org/10.1007/3-540-61474-5_60, https://doi.org/10.1007/3-540-61474-5_60

24. Esparza, J., Leucker, M., Schlund, M.: Learning workflow petri nets. Fundam.
Informaticae 113(3-4), 205–228 (2011)

25. Farzan, A., Chen, Y.F., Clarke, E., Tsay, Y.K., Wang, B.Y.: Extending automated
compositional verification to the full class of omega-regular languages. In: TACAS.
pp. 2–17 (2008)

26. Ferber, J., Weiss, G.: Multi-agent systems: an introduction to distributed artificial
intelligence, vol. 1. Addison-wesley Reading (1999)

27. Fisman, D., Frenkel, H., Zilles, S.: Inferring symbolic automata. Log. Methods
Comput. Sci. 19(2) (2023)

28. Fisman, D., Izsak, N., Jacobs, S.: Learning broadcast protocols. Proceedings
of the AAAI Conference on Artificial Intelligence 38(11), 12016–12023 (Mar
2024). https://doi.org/10.1609/aaai.v38i11.29089, https://ojs.aaai.org/index.php/
AAAI/article/view/29089

29. Fisman, D., Nitay, D., Ziv-Ukelson, M.: Learning of structurally unambiguous
probabilistic grammars. Log. Methods Comput. Sci. 19(1) (2023)

30. Fisman, D., Saadon, S.: Learning and characterizing fully-ordered lattice automata.
In: Automated Technology for Verification and Analysis - 20th International Sym-
posium, ATVA 2022, Proceedings. pp. 266–282 (2022)

31. George, N.: ALMA: automata learner using modulo 2 multiplicity automata. CoRR
abs/2301.04077 (2023). https://doi.org/10.48550/ARXIV.2301.04077, https://
doi.org/10.48550/arXiv.2301.04077

32. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

33. Gold, E.M.: Complexity of automaton identification from given data. Inf. Control.
37(3), 302–320 (1978)

34. Grinchtein, O., Leucker, M., Piterman, N.: Inferring network invariants automat-
ically. In: Automated Reasoning, Third International Joint Conference, IJCAR
2006, Proceedings. pp. 483–497 (2006)

35. Hack, M.: Decidability questions for Petri Nets. Ph.D. thesis, Massachusetts Insti-
tute of Technology, Cambridge, MA, USA (1976)

36. Heule, M., Verwer, S.: Exact DFA identification using SAT solvers. In: Grammatical
Inference: Theoretical Results and Applications, 10th International Colloquium,
ICGI 2010. Proceedings. pp. 66–79 (2010)

37. de la Higuera, C.: Characteristic sets for polynomial grammatical inference. Mach.
Learn. 27(2), 125–138 (1997)

https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1109/ACCESS.2018.2831228
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1007/3-540-61474-5_60
https://doi.org/10.1609/aaai.v38i11.29089
https://doi.org/10.1609/aaai.v38i11.29089
https://ojs.aaai.org/index.php/AAAI/article/view/29089
https://ojs.aaai.org/index.php/AAAI/article/view/29089
https://doi.org/10.48550/ARXIV.2301.04077
https://doi.org/10.48550/ARXIV.2301.04077
https://doi.org/10.48550/arXiv.2301.04077
https://doi.org/10.48550/arXiv.2301.04077

14 N. Izsak et al.

38. Howar, F., Steffen, B., Jonsson, B., Cassel, S.: Inferring canonical register au-
tomata. In: Verification, Model Checking, and Abstract Interpretation - 13th In-
ternational Conference, VMCAI 2012. Proceedings. pp. 251–266 (2012)

39. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: A redundancy-free ap-
proach to active automata learning. In: Runtime Verification - 5th International
Conference, RV 2014. Proceedings. pp. 307–322 (2014)

40. Isberner, M., Howar, F., Steffen, B.: The open-source learnlib - A framework for
active automata learning. In: Computer Aided Verification - 27th International
Conference, CAV 2015, Proceedings, Part I. pp. 487–495 (2015)

41. José Oncina, P.G.: Identifying regular languages in polynomial time. In: Advances
in structural and syntactic pattern recognition. pp. 99–108 (1992). https://doi.org/
doi.org/10.1142/9789812797919_0007

42. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA, USA (1994)

43. Kraus, S.: Automated Negotiation and Decision Making in Multiagent Environ-
ments, pp. 150–172. Springer Berlin Heidelberg (2001). https://doi.org/10.1007/
3-540-47745-4_7, https://doi.org/10.1007/3-540-47745-4_7

44. Li, Y., Chen, Y.F., Zhang, L., Liu, D.: A novel learning algorithm for büchi au-
tomata based on family of dfas and classification trees. Information and Computa-
tion 281, 104678 (2021). https://doi.org/https://doi.org/10.1016/j.ic.2020.104678,
https://www.sciencedirect.com/science/article/pii/S0890540120301711

45. Maler, O., Pnueli, A.: On the learnability of infinitary regular sets. Inf. Comput.
118(2), 316–326 (1995)

46. Michaliszyn, J., Otop, J.: Learning infinite-word automata with loop-index queries.
Artif. Intell. 307, 103710 (2022)

47. de Moura, L.M., Bjørner, N.S.: Z3: an efficient SMT solver. In: Ramakrishnan,
C.R., Rehof, J. (eds.) Tools and Algorithms for the Construction and Analysis of
Systems, 14th International Conference, TACAS 2008. Proceedings. Lecture Notes
in Computer Science, vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.
1007/978-3-540-78800-3_24, https://doi.org/10.1007/978-3-540-78800-3_24

48. Muscholl, A., Walukiewicz, I.: Active learning for sound negotiations. In: LICS
’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science,2022. pp.
21:1–21:12 (2022)

49. Neider, D., Gavran, I.: Learning linear temporal properties. In: 2018 Formal Meth-
ods in Computer Aided Design, FMCAD 2018. pp. 1–10 (2018)

50. Oliveira, A.L., Silva, J.P.M.: Efficient algorithms for the inference of minimum size
dfas. Machine Learning 44(1/2), 93–119 (2001)

51. Rackoff, C.: The covering and boundedness problems for vector addition systems.
Theor. Comput. Sci. 6, 223–231 (1978)

52. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (Apr 1993)

53. Roy, R., Fisman, D., Neider, D.: Learning interpretable models in the property
specification language. In: Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020. pp. 2213–2219 (2020). https:
//doi.org/10.24963/ijcai.2020/306, https://doi.org/10.24963/ijcai.2020/306

54. Sakakibara, Y.: Learning context-free grammars using tabular representations. Pat-
tern Recognit. 38(9), 1372–1383 (2005)

55. Schmitz, S., Schnoebelen, P.: The power of well-structured systems. In: CONCUR.
Lecture Notes in Computer Science, vol. 8052, pp. 5–24. Springer (2013)

https://doi.org/doi.org/10.1142/9789812797919_0007
https://doi.org/doi.org/10.1142/9789812797919_0007
https://doi.org/doi.org/10.1142/9789812797919_0007
https://doi.org/doi.org/10.1142/9789812797919_0007
https://doi.org/10.1007/3-540-47745-4_7
https://doi.org/10.1007/3-540-47745-4_7
https://doi.org/10.1007/3-540-47745-4_7
https://doi.org/10.1007/3-540-47745-4_7
https://doi.org/10.1007/3-540-47745-4_7
https://doi.org/https://doi.org/10.1016/j.ic.2020.104678
https://doi.org/https://doi.org/10.1016/j.ic.2020.104678
https://www.sciencedirect.com/science/article/pii/S0890540120301711
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.24963/ijcai.2020/306
https://doi.org/10.24963/ijcai.2020/306

Learning Broadcast Protocols with LeoParDS 15

56. Vaandrager, F.W., Garhewal, B., Rot, J., Wißmann, T.: A new approach for ac-
tive automata learning based on apartness. In: Tools and Algorithms for the Con-
struction and Analysis of Systems - 28th International Conference, TACAS 2022,
Proceedings, Part I. pp. 223–243 (2022)

57. Weiss, G.: Multiagent systems: a modern approach to distributed artificial intelli-
gence. MIT press (1999)

	Learning Broadcast Protocols with LeoParDS

