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Parametrized protocols



Parametrized protocols

Given a protocol P, n € N.

A parallel running of protocol P for n processes: P" =\P | P - | P/
n
The “language” of P™: L(P") = \P NP -l 13
Y
n

The “language” of a protocol P:  L(P) = U L(P™)

neN
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A simple BP and its execution

a’l’ b!!, b77
all, 077

[(3)] _> S~ a’?

state vector




A simple BP and its execution

a’l’ b!!, 077
a'l, b?7?

state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution

a?? bl b?7 a?? bl b?7
all, b?? all, b??

[i] afte'r'a!!

state vector state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution

a’l’ b!!, 077
all, 077

state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution

a?? b!l, b?7?
all | b77

N
g~ .

state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution

action a is being broadcasted
a’l’ b!!, 077
all | b77

F—

state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution

action a is being broadcasted
a’l’ b!!, 077
all, 077

—

. 2

1

state vector

S~ a’?

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions




A simple BP and its execution

action b is being broadcasted
a?? bl H7?
all, 077

H
1 S~ a’’?

state vector

one process, the sender, takes a a!! transitions
all the other processes, the receivers, respond by following the o? ? transitions



A simple BP and its execution
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one process, the sender, takes a a!! transitions
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Note that L(P') € L(P?) € L(P?) C -+

Are these inclusions strict, or does there exist an n s.t.
adding more processes does not change the language?



Cutoff

If 3neN s.t. vm>n L(P™Y)=L(P™)

If such an n exists, then the system has a cutoff n.
Otherwise, we say there is no cutoftf.




Cutoff

JneN s.t. vm>n L(P™)=L(P™)



Fine BPs

A BP that:

1. Has no hidden states

2. A cutoff exists
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Protocols Inference
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Inference

We provide an inference algorithm for BPs,
given a sample of words that are consistent with a BP,
infers a correct BP.

[AAAI24] Learning Broadcast Protocols
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Consistency

Let C be the class of fine BPs,
Given sample § and k€N, determine whether there

exists a BP BE€C consistent with § with at most k states.



Consistency

We show that consistency is NP-hard for the class of fine BPs.

e
NP-Hard

[AAAI24] Learning Broadcast Protocols



Consistency
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Figure 3: Reduction of DFA-consistency to BP-consistency.
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Polynomial data

s there an inference-algorithm A s.t. for all BP BEC,
one can associate a polynomial-sized sample g
so that A correctly infers L(B) from any sample

subsuming Sp.

Recall: We mark the class of fine BPs as C.



Polynomial data

We show that there exist fine BPs
for which there is no characteristic set of polynomial size.

[AAAI24] Learning Broadcast Protocols
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Polynomial Predictability

Can a learner correctly classify an unknown word with
high probability after asking polynomially many

membership queries.



Polynomial Predictability

We show that under plausible cryptography
assumptions, fine BPs (thus BPs in general) are not
polynomially predictable.

[AAAI24] Learning Broadcast Protocols
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Figure 4: A BP simulating intersection of £ DFAs.
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