# Learning Broadcast Protocols (with LeoParDS)

#### Dana Fisman<sup>1</sup>, <u>Noa Izsak<sup>1</sup></u>, Swen Jacobs<sup>2</sup>

<sup>1</sup>Computer Science Department, Ben-Gurion University, <sup>2</sup>CISPA Helmholtz Center for Information Security

Israel Verification Day - IVD'24



#### **Parametrized protocols**

Given a protocol  $P, n \in \mathbb{N}$ .

A parallel running of protocol P for n processes:  $P^n = P \parallel P \parallel \cdots \parallel P$ 

The "language" of 
$$P^n$$
:  $\mathcal{L}(P^n) = P \parallel P \parallel \cdots \parallel P$   
*n*  
The "language" of a protocol  $P$ :  $\mathcal{L}(P) = \bigcup_{n \in \mathbb{N}} \mathcal{L}(P^n)$ 









[1999] On the Verification of Broadcast Protocols









state vector





state vector

state vector









state vector





state vector





state vector





#### Note that $\mathcal{L}(P^1) \subseteq \mathcal{L}(P^2) \subseteq \mathcal{L}(P^3) \subseteq \cdots$

Are these inclusions strict, or does there exist an *n* s.t. adding more processes does not change the language?

#### Cutoff

#### If $\exists n \in \mathbb{N}$ s.t. $\forall m > n \mathcal{L}(P^n) = \mathcal{L}(P^m)$

If such an *n* exists, then the system has a **cutoff**, *n*. Otherwise, we say there is no cutoff.

#### **Fine BPs**

A BP that:

#### 1. Has no hidden states

2. A cutoff exists

# Learning paradigms





#### **Protocols Inference**



Consistent sample

#### Inference

#### We provide an inference algorithm for BPs, given a sample of words that are consistent with a BP, infers a correct BP.



[AAAI24] Learning Broadcast Protocols – Fisman et al.



#### Consistency

#### Let C be the class of fine BPs,

#### Given sample S and $k \in \mathbb{N}$ , determine whether there

exists a BP  $B \in C$  consistent with S with at most k states.

### Consistency

#### We show that consistency is NP-hard for the class of fine BPs.



[AAAI24] Learning Broadcast Protocols

#### Consistency



Figure 3: Reduction of DFA-consistency to BP-consistency.

[AAAI24] Learning Broadcast Protocols – Fisman et al.



# **Polynomial data**

Is there an inference-algorithm  $\mathcal{A}$  s.t. for all BP  $B \in C$ , one can associate a polynomial-sized sample  $\mathcal{S}_B$ so that  $\mathcal{A}$  correctly infers  $\mathcal{L}(B)$  from any sample subsuming  $\mathcal{S}_B$ .

Recall: We mark the class of fine BPs as C.

## **Polynomial data**

# We show that there exist fine BPs for which there is no characteristic set of polynomial size.

[AAAI24] Learning Broadcast Protocols

### **Polynomial data**





## **Polynomial Predictability**

Can a learner correctly classify an unknown word with high probability after asking polynomially many membership queries.

### **Polynomial Predictability**

We show that under plausible cryptography assumptions, fine BPs (thus BPs in general) are not polynomially predictable.

[AAAI24] Learning Broadcast Protocols – Fisman et al.

#### **Polynomial Predictability**



Figure 4: A BP simulating intersection of k DFAs.

AAAI24] Learning Broadcast Protocols – Fisman et al.

