
Insights into Learning Broadcast Protocols 
(Short Paper) 

Dana Fisman1 ,  Noa  Izsak1,2(B) , and Sw en Jacobs2

1 Ben Gurion University, Beer-Sheva, Israel 
dana@bgu.ac.il, izsak@post.bgu.ac.il 

2 CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
jacobs@cispa.de 

Abstract. Broadcast protocols (BPs) are a formal model of distributed 
systems with an unbounded number of processes communicating through 
broadcasts. We study the problem of passively learning BPs from execu-
tion traces, focusing on the class of fine BPs which does not have hidden 
states and admits a cutoff. We present a passive learning algorithm with 
a constraint-based approach that guarantees consistency with the sam-
ple, and returns a minimal equivalent BP if the sample is sufficiently 
complete (i.e., subsumes a c haracteristic set). Furthermore, we describe
LeoParDS, the first tool that implements these techniques, supporting
the practical inference of fine BPs, as well as tasks that include sample
generation and approximate equivalence checking.

This work was previously published at AAAI’24 [8] and later imple-
mented at ATVA’24 [12]. We summarize its main results here to fos-
ter discussion within the cybersecurity and verification community. This 
short paper is intended as a concise overview for readers unfamiliar with
both prior publications.

Keywords: Learning Theory · Broadcast Protocols · Multiagent
Systems

1 Introduction 

Learning computational models has long attracted interest in artificial intelli-
gence and formal verification, e.g., [1, 9, 15]. In particular, concurrent computa-
tional models pose significant challenges for learning due to their succinctness 
and the absence of canonical minimal representations. While previous learning 
techniques have addressed models with a fixed number of processes (such as com-
municating automata [3], workflow Petri nets [7], and negotiation protocols [14]), 
they fall short for parameterized protocols, which are required to work c orrectly
for any number of processes.

Broadcast protocols (BPs) are an expressive class of concurrent models with 
synchronous broadcast comm unication. They have previously been considered in
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the context of parameterized verification [4, 6], where one seeks correctness guar-
antees for all system sizes. In parameterized verification, the notion of a cutoff 
provides a promising way to reduce the reasoning about infinitely many sys-
tem instances to a finite-size r epresentative. However, the application of cutoff
concepts within a learning framework for BPs had not previously been explored.

Our work proposes a learning framework for BPs under two conditions: (1) 
the BP has no hidden states, and (2) there exists a cutoff (i.e., a number beyond 
which its language stabilizes). We call these fine BPs, and note that many broad-
cast protocols satisfy these constraints, making this a meaningful target class.
Our main contributions are as follows.

– A constraint-based passive learning algorithm for fine BPs, using SMT solver 
to infer models from execution traces.

– Hardness results showing that consistency is an NP-hard problem, charac-
teristic sets may be exponentially large, and fine BPs are not polynomially
predictable under standard cryptographic assumptions.

– Implementation of these techniques in the tool LeoParDS, supporting sample 
generation, random BP syn thesis, and approximate equivalence checking.

These results extend previous learning frameworks by not requiring a fixed sys-
tem size or a known cutoff, thus introducing a new way of passive learning 
for parameterized concurren t models. For complete and detailed proofs, please
refer to “Learning Broadcast Protocols” (AAAI 2024) publication [8], and for 
implementation details, see the “Learning Broadcast Protocols with LeoParDS”
(ATVA 2024) paper [12]. 

2 Preliminaries 

This section briefly recalls key definitions from [8, 11, 12] for self-con tainment.
Broadcast Protocols (BPs). Broadcast protocols (BPs) [5, 6] are finite-state 

systems that use synchronous broadcast messages. Formally, a BP . B =
(S, s0, L,R) consists of a finite state set . S with initial state .s0 ∈ S,  a  set  o  f
labels .L = {a!!, a??|a ∈ A} for a finite set of actions . A,  whe  re .a!! is a broadcast 
sending transition and .a?? is a broadcast receiving transition (or response), and
a transition relation .R ⊆ S × L × S. All processes execute the same protocol, . B, 
and the system with . n identical processes is denoted .Bn. A global step consists 
of one process broadcasting . a (taking a n .a!! transition) while all others respond 
simultaneously (taking an .a?? transition). Processes can always respond, yet at 
any step only a single action is broadcasted. States with no outgoing sending 
transitions are called hidden; i n this work, we focus on BPs without hidden
states, which is a mild restriction.

Semantics and Cutoffs. The semantics of .Bn can be expressed by tracking 
how processes move between the states when a broadcast action occurs. Feasible
words in .Bn form the language .L(Bn), and the language of the protocol . B is: 
.L(B) = n∈N

L(Bn).  A  word .w ∈ A∗ is feasible in .Bn if there exists an e xecution
trace of .Bn based on the sequence of actions . w.
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A  BP, . B,  has a cutoff . c if its language stabilizes for all .n ≥ c,  that  i  s,
.L(Bn) = L(Bc) for an y .n ≥ c. If a BP has a cutoff and no hidden states, we 
call it a fine BP. Two BPs are equivalent if they accept the same language. W e
note that minimal fine BPs (and thus BPs in general) are not unique up to
isomorphism (see Fig. 1 for an e xample).

Fig. 1. Two non-isomorphic minimal fine BPs: . L(B1) = L(B2) = a(a ∪ b)∗.

Learning Problems. We consider the following learning problems for BPs. A 
sample is a set of labeled words that indicates their feasibility/infeasibility in
.Bn. The key q uestions are:
– Inference: Given a consistent sample, infer a BP consistent with it.
– Consistency: Is there a BP with at most . k states consistent with a sample.
– Polynomial Data: Can characteristic sets be of polynomial size?
– Polynomial Predictability: Can a learner classify unknown words with 

high probability after polynomially many queries?

Further algebraic details of transition matrices and state vectors along with 
detailed definitions, including the formal language of membership and draw
queries, appear in our full version [8]. 

3 Properties of Broadcast Protocols 

This section summarizes key properties of broadcast protocols needed for our 
learning results. First, note that the language of any B P is prefix-closed, and
adding processes can only increase feasible behaviors:

Lemma 1 (Prefix-closedness and Monotonicity [ 8]). If . B is a B P, then
.L(B) is prefix-closed. Moreover, .L(Bk) ⊆ L(B ) for al l . . 

Second, BPs exhibit a type of progressive growth across process counts:

Lemma 2 (Step-by-step Progress [ 8]). Let .w ∈ A∗, .a ∈ A,  and .m < n.  I  f
.w∈L(Bm) and .wa /∈L(Bm),  y  et .wa∈L(Bn), then .wa∈L(Bm+1). 

Third, even though fine BPs do not have a unique canonical minimal repre-
sentation (see Fig. 1), there is a consistent correspondence among their states:

Lemma 3 (Relation Between Minimal Equivalent Fine BPs [ 8]). Let 
.B1 and .B2 be minimal fine BPs with .L(B1) = L(B2). Then for every .m ∈ N, 
it holds that .L(Bm

1 ) = L(Bm
2 ) and there is a bijection between their states that 

preserve the sets of enabled sending actions, and their reachable configurations
are consistent under this bijection.

These results lay the foundation for the inference algorithm described in
Sect. 4.
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4 Inferring a BP from a Sample 

This section summarizes the inference algorithm developed in our previous
work [8, 12] for learning fine broadcast protocols from samples. Full technical 
details and proofs a re given in that extended version.

Given a sample .S of labeled traces, the algorithm . I constructs a B P . BS
consistent with . S. Its key idea is to encode c onstraints on partial functions:

– .f st : A → S, mapping each action to the s tate enabling its broadcast;
– .f !! : A → S, giving the p ost-broadcast state;
– .f??

a : S → S for eac h .a ∈ A, .s ∈ S, specifying where receivers go on . a. 

These functions define the transition relation of .BS . The sample provides positive 
and negative examples of feasible words with various amounts of process counts, 
allowing constraints to rule out inconsistent states and to ensure specification
satisfaction. In essence, the algorithm ensures:

– Consistency with positive example (i.e., with feasible words),
– Rejection of negativ e example,
– No hidden s tates,
– Partitioning of actions among states to match t he observed behavior.

The resulting constraints are encoded in the theory of equality with uninter-
preted functions (EUF) and can be solved with standard SMT solvers. A sample-
consistent valuation defines a BP consistent with . S. 

Theorem 1 (Correctness [ 8]). Let . S be a sample consistent with some fine 
BP. Then any .BS satisfying the constraints is consistent with . S. 

The full constraint definitions, the induction-based correctness pro of appear
in [8] and the SMT encoding appear in [12] for completeness.

Corollary 1 ([ 8]). Algorithm . I is a sound inference algorithm for fine BPs and 
can be i mplemented using existing SMT tools.

5 Returning a Minimal BP 

This section summarizes how a sufficiently complete sample allows returning a 
minimal equivalent B P, rather than just any consistent one.

We define a characteristic set (CS) for a fine BP . B as a sample (a finite set) 
rich enough to capture the BP behavioral properties, that is, f ully separate its
states and transitions. We provide a constructive algorithm .G that explores a 
finite unfolding of feasible traces (via a prefix-tree-like exploration) to produce
such a CS. Intuitively, .G explores all feasible words up to the cutoff (which 
is detected on the fly). It labels each node with reachable state-vectors, and
terminates once the exploration stabilizes (i.e., the cutoff is detected).
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Theorem 2 (Minimal BP Recovery [ 8]). For any minimal fine BP . B, there 
exists a characteristic set .SB such that an inference algorithm . A, given any 
sample subsuming .SB, returns a minimal fine-BP equivalent to . B. 

Unfortunately, characteristic sets may be exp onentially large:

Theorem 3 (CS Lower Bound [ 8]). There exists a family of fine BPs with 
no char acteristic set of polynomial size.

A consequence of this construction is that fine BPs can be exponentially more 
succinct than the minimal DFA for the same language:

Corollary 2 ([ 8]). There exists a family of fine BPs whose minimal equivalent 
DF A is exponentially larger.

These results clarify the sample complexity limits to achieve minimal inference 
of fine BPs. The complete construction details and proofs are given in [8]. 

6 Consistency is NP-Hard for Fine BPs 

We show that deciding BP consistency is NP-hard, even for fine-BPs. While 
DFA consistency is known to be NP-hard [10],  a  DFA  is  not  a  special  case  of  a  
fine BP; however, a fine-BP can simulate any DFA with a modest overhead.

Figure 2 illustrates the key construction. It embeds the DFA states into a BP 
states and uses additional broadcast transitions to c apture accepting/rejecting
behavior while maintaining no hidden states. Extra symbols (. i, . $, . , . ⊥, . x) 
coordinate the simulation, and projections recover t he original DFA language.

Fig. 2. Reduction from DFA-consistency to BP-consistency.

Lemma 4 (BP Simulation of DFA [ 8]). Any nontrivial regular language . L
over .Σ with DFA of . n states can be simulated by a fine BP with at most . n + 5
states so that the feasible BP words project back to . L. 

This simulation enables a reduction from DFA-consistency:
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Theorem 4 ([ 8]). BP consistency is NP-hard.

The reduction is polynomial and it preserves the feasibility (or infeasibility) of 
words under the mentioned projection. See the extended version [8]  for  a  full  
construction and an alternative reduction from all-eq-SAT [13]. 

Furthermore, since the feasibility of a word .w ∈ A∗ in .Bn can be checked in 
polynomial time, B P-consistency is NP-complete.

Corollary 3 ([ 8]). BP consistency is NP-c omplete.

7 Polynomial Predictability 

Finally, we discuss the predictability of fine BPs under the polynomial-
predictability learning paradigm whic h is an active learning problem. Roughly
speaking, a class . C is polynomially predictable if there is a learner that, given 
polynomially many membership or draw queries, can predict the membership 
of a random test word with high accuracy. See Angluin and Kharitonov [2]  for  
formal background.

We show that under standard cryptographic assumptions, fine BPs are not 
polynomially predictable. The key idea is a reduction from the intersection of 
DFAs, known to be polynomially-unpredictable in this sense. Our construction 
uses a BP that simulates multiple DFAs concurrently, routing one process per
DFA to its initial state, while controlling the alphabet via an additional broadcast
controller, as shown in Fig. 3. 

Fig. 3. A BP simulating intersection of . k DFAs. 

Theorem 5 (Predictability Lower Bound [ 8]). Assuming the hardness of 
quadratic residuosity, RSA inversion, or factoring Blum integers, BPs are not 
p olynomially predictable with membership queries.

The proof is for fine-BPs, but thus follows for broadcast protocols, in gen-
eral. The reduction follows Angluin and Kharitonov’s classical techniques [2], 
adapting them to broadcast-based models.
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8 Conclusion 

This paper summarized our investigation into the learnability of fine broadcast 
protocols, the first framework for learning concurrent models without assuming a 
fixed number of processes. On the positive side, we presented a passive inference 
algorithm capable of returning a consistent BP, and even a minimal equivalent 
BP given a sufficiently complete sample. On the negative side, we showed that
consistency is NP-hard, characteristic sets can be exponentially large, and fine
BPs are not polynomially predictable.

To bridge theory and practice, we implemented these methods in LeoParDS, 
the first tool for learning broadcast protocols in a parameterized setting. LeoP-
arDS supports characteristic set generation, random sample and BP generation, 
equiva lence checking, and demonstrates that these learning techniques can be
applied in practice despite their worst-case theoretical complexity1. Full details 
and experimental results are provided in [12]. 

Acknowledgment. Noa Izsak carried out this work in part as a member of the S aar-
brücken Graduate School of Computer Science.
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