Learning Global Synchronous Protocols: A Broadcast Automata Perspective

Dana Fisman, <u>Noa Izsak</u>, Swen Jacobs

AUTOMATA & WAN 2025

Intuition **Definitions** Motivation Results

Broadcast Protocol (BP)

BP = Finite-State Machine + Global Synchronous Steps

Given a protocol $P, n \in \mathbb{N}$.

A parallel running of protocol P for n processes: $P^n = P \parallel P \parallel \cdots \parallel P$

The "language" of P^n : $\mathcal{L}(P^n)$

The "language" of a protocol P:
$$\mathcal{L}(P) = \bigcup_{n \in \mathbb{N}} \mathcal{L}(P^n)$$

Definitions

Motivation

Results

Note that $\mathcal{L}(P^1) \subseteq \mathcal{L}(P^2) \subseteq \mathcal{L}(P^3) \subseteq \cdots$

Are these inclusions strict, or does there exist an *n* s.t. adding more processes does not change the language?

Definitions

Motivation

Results

Cutoff

If $\exists n \in \mathbb{N}$ s.t. $\forall m > n \mathcal{L}(P^n) = \mathcal{L}(P^m)$

If such an *n* exists, then the system has a **cutoff**, *n*. Otherwise, we say there is no cutoff.

Motivation

Results

Fine BPs

A BP that:

1. Has no hidden states

2. A cutoff exists

Motivation - Why Learn These Rules?

- Understand distributed behavior
- Debug faulty systems
- Recover legacy protocols
- Support verification

Results

Given traces, can we recover the global rule?

Consistent sample

Yes, we can!

Definitions

Motivation

Results

Protocols Inference

Consistent sample

Motivation

Results

Inference

We provide an inference algorithm for BPs, given a sample of words that are consistent with a BP, infers a correct BP.

[AAAI24] Learning Broadcast Protocols

Why is it Hard?

- * Consistency is NP-complete
- * Characteristic sets can be exponentially large
- * **Predictability** is impossible under cryptographic assumptions

No free lunch!

[AAAI24] Learning Broadcast Protocols

[AAAI`24] Learning Broadcast Protocols – Fisman et al.

[ATVA`24] Learning Broadcast Protocols with LeoParDS – Izsak et al.

Thanks for your attention

Contact information

Noa Izsak

izsak@post.bgu.ac.il

https://noa-izsak.github.io/